
 

13-Oct-06                                                 Page 1 of 20 

Using Eigenvectors as Constraints in  
MAD-X Matching Module 

 

Valery Kapin, Moscow Engineering Physics Institute  

Yuri Alexahin, Fermi National Accelerator Laboratory  

Frank Schmidt, European Organization for Nuclear Research 

 

1. Introduction 

Computer simulation of beam optics is one of the tools for understanding and upgrading 

performances of existing machines. A correct simulation model of the machine lattice requires a 

precise knowledge of physical parameters for every lattice element. Effective parameters of the 

physical elements can be reconstructed from beam measurements, while they can be related with 

measurement data either directly with an orbit response matrix [1] or by means of intermediate 

parameters, e.g. lattice optical functions [2]. Presently, both algorithms are implemented for the 

correction of linear coupling in TEVATRON [2, 3]. 

In this note, the second approach for two-dimensional (2D) linearly coupled betatron motion is 

implied, while the turn-by-turn (TBT) data are considered to be related with normal modes of 

betatron oscillations [2]. Correct values of physical parameters can be found by a matching 

procedure of a simulation code when physical parameters are varied in order to match to constraints 

given by values of lattice optical functions. 

The 2D linear coupled motion can be decoupled into normal modes either using the Edward-Teng 

method [4] or using the approach developed by Ripken [5]. Simple relations between the Edwards-

Teng and the Ripken lattice functions are known [6]. The Ripken parameterization explicitly deals 

with normal modes and is most suitable for the TBT data analysis [7]. In this note, the lattice 

eigenvectors given by the Ripken parameters are used as constraints in the matching procedure. 
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The MAD code is well established tool for beam dynamics simulations [8]. We are going to adjust 

its successor MAD-X [9] to simulate the beam optics in TEVATRON rings. The MAD-X (version 

3.03.13) is able to calculate both Edwards-Teng and Ripken parameters using the commands 

“TWISS” and “PTC_TWISS”, respectively. In former case, the coupled matrix and the TWISS 

parameters are derived from the 4-by-4 one-turn linear matrix [10]. In the latter case, the 6-by-6 

eigenvector matrix is extracted from the normal forms derived from the non-linear map by PTC-

library [11]. The “TWISS” command deals with simple 4-by-4 matrix calculations and run faster 

than the “PTC_TWISS” which dealt with non-linear maps and normal forms and intended for more 

general 3D calculations. 

A matching procedure with a simulation code for large rings like TEVATRON may use huge 

numbers of both the varying parameters and the targeting constrains. Therefore, it requires fast and 

simple calculations of a penalty function, which is in fact an algebraic combination of all 

constraints. In this note, we have shown that the Ripken parameters for 2D case can be calculated 

using only the “TWISS” command utilizing simple expressions in the MAD-X input file. The results 

of the “TWISS” command have been tested with a simple ring lattice and verified using results 

provided by the “PTC_TWISS” command. The regular MAD-X matching procedure with macros 

existing in “MAD-X-3.03.13” [12] is used in our linear case for both commands. Note, that this 

matching is primarily intended for the nonlinear parameters. In our tests, matching with the 

“TWISS” command has run up to ten times faster than one with the “PTC_TWISS” command. 

We may conclude that similar simple formulae can be implemented in the TWISS-module of MAD-

X for 2D calculations of the Ripken parameters. Such update of MAD-X may be desirable in order 

to reduce computation time of 2D matching procedures for large rings. An alternative way is to 

implement the new PTC matching [13] speeding up the computations by one-two orders. 
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Calculations and Matching for the Eigenvectors with PTC_TWISS 

 

The “PTC_TWISS” command of MAD-X [12] calculates the Ripken parameters and the 

eigenvectors for the 3D case using the PTC_TWISS module based on the PTC code. This module 

uses the “Normal-Form” technique of PTC which is a universal tool for treatments of non-linear 

maps. The module performs a normal form on a given map. Normal form contains all sorts of 

information, including the lattice functions. The 6-by-6 eigenvector matrix is also extracted from the 

normal forms. 

PTC_TWISS command can list both the Ripken parameters and components of eigenvectors. 

According to the Ripken notation [5], the point in the 4-D phase space ( ) ( )Tyyxxsz ′′= ,,,r  at 

position s  is expressed as: 

( ) ( ) ( )[ ] ( ) ( )[ ]II4II3III2I1I sincossincos φφεφφε szszszszsz rrrrr
−+−= ,                       (1) 

where III,ε  and III,φ  are constants for the I-st and II-nd eigen-modes, the column-vector jzr  

( 4,,1 K=j ) has four components ( )Tjjjjj VVVVz ,4,3,2,1=
r , which are related to the Ripken 

parameters with the following matrix equation: 
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After substitution eqn. (2) into eqn. (1), one gets the particle coordinates expressed with the Ripken 

parameters 
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The “PTC_TWISS” commands tracks the eigenvectors and prints components of the above matrix 

V  to the “Twiss” table, if they are selected with the “SELECT” command (flag=ptc_twiss). 

Particular components jiV ,  can be selected with the names EIGNij. The Ripken parameters can be 

printed either directly by selecting corresponding names (e.g.,  ,, Kbeta12beta11 ) or calculated 

from the eigen-vector components within input script according to following formulae:  
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Note, that in the PTC_TWISS table, the beta-functions Ixβ , IIxβ , Iyβ , IIyβ  are denoted as beta11 , 

beta21, beta22, beta12, respectively. 

The matching procedure using the eigenvectors as the constraints can be done with the regular 

MAD-X matching with USE_MACRO keyword [12], which allows multiple the user-defined 

expressions within a macro script and primarily intended for the nonlinear parameters. Here, it is 

mainly used to verify our calculations with the “PTC_TWISS”. The example below shows the 

general input structure for the matching procedure with the “PTC_TWISS” command.  

1) The target values of constraints are assigned by following expressions: 

K17;0.41192030  2V12_TBT_M0 4;2.39386297  1V11_TBT_M0 ==   
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2) the calculated eigen-vector components 1,1V , 2,1V  at the elements labeled with M01 , M02  are 

extracted from “PTC_TWISS”-table and assigned to the variables V11_MR_M01 , V12_MR_M02 . 

  eign12);M02,twiss,table(ptc_:V12_MR_M02

eign11);M01,twiss,table(ptc_:V11_MR_M01

K=

=  
 

 

3) The following macro named as ptc_eigen  contains a setup of PTC-environment, the 

“SELECT”-ion of the used eigen-vector components 1,1V , 2,1V  and the call of the “PTC_TWISS” 

command: 

exact;10,nst6,method2,model_layout,ptc_create _universe;ptc_create

{ macro:ptc_eigen

===

=
 

};ptc_end;

5;icaseit,closed_orbptc_twiss,

;eign12,eign11,name,columnptc_twiss,flagselect,

clear;ptc_twiss,flagselect,

=

==

=

K
 

 

4) The matching as defined above macro is initiated with the command match, use_macro; and is 

terminated with the command endmatch;. The matching block defines variable parameters (the 

strengths K1  of two quadrupoles QF1  and QD1 ), the name of used macro (ptc_eigen ), the 

constrains imposed for the variables V11_MR_M01 , V12_MR_M02 , and the matching method 

(jacobian ): 

endmatch;

 10;-1.0ETOLERANCE 100,CALLS jacobian, 

2;V12_TBT_M0V12_MR_M02expr ,constraint 

 1;V11_TBT_M0V11_MR_M01expr ,constraint 

ptc_eigen;name use_macro, 

K1;QD1-NAME VARY,  K1;QF1-NAME VARY, 

use_macro; match,

==

==

==

=

>=>=

K
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Calculations and Matching for Eigenvectors with TWISS 

The “TWISS” command of MAD-X [12] calculates the Edwards-Teng parameters using the TWISS 

module, which is based on the corresponding subroutines copied from the MAD-8 code. The 

“Physical Guide” of MAD-8 [10] outlines the algorithm for the computations of the Edwards-Teng 

parameters. The method is similar to reference [10]. However, the FORTRAN code of the TWISS 

module in MAD-X uses slightly modified formulae presented below. 

In the 4-D phase space, the linear 44×  transfer matrix M  partitioned into four 22× blocks ( A ,  

B , C , D ) can be transformed to a new block diagonal matrix U with two non-zero 22×  matrices 

xE  and yE , i.e.:  









=

DC
BA

M  and 







= y

x

E0
0E

U .                                                  (5) 

The “symplectic rotation” is performed using the 22×  coupling matrix R . The TWISS module 

calculates the matrices R , xE , yE  according to the following formulae:        

 

( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ] [ ]BCDABCDADA +








+++−=
−1

2Tr-Tr
4
1detTr-TrsignTr-Tr

2
1R ,    (6) 

RBAE -=x , BDE R+=y                                                  (7). 

 

The “TWISS” command calculates the components of the coupling matrix (R11 , R12 , R21 , R22  in 

the MAD-X notation) and the decoupled lattice functions for two-planes (BETX , ALFX , MUX , BETY , 

ALFY , MUY ). At the initial point of the periodical lattice, the coupling matrix is calculated according 

to the eq. (5). The lattice functions for every plane are calculated similar to the Courant-Snyder 

parameters for uncoupled linear optics. For optimal numeric precision MAD uses the following 

formulas [10] for tunes 0
,yxµ : 
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The initial lattice functions are given as  

( )0
,

,
2,1

0
, 2sin yx

yx
yx E πµβ =  and ( ) ( )[ ]0

,
,
2,2

,
1,1

0
, 2sin2 yx

yxyx
yx EE πµα −= .                   (9) 

 

Then, the initial decoupled lattice functions are tracked throughout the ring elements. 

The eigenvectors of the coupled system are expressed by  

( )( ) 
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where 
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The particle coordinates can be expressed by the following equation: 
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where xxx aiaa ′′+′=  and yyy aiaa ′′+′=  are the complex constants, and yxyx ,, 2πµϕ = . 

After the substitution of eqn. (6)-(10) into eqn.(11), one gets the particle coordinates expressed with 

the Edward-Teng parameters: 
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There is a simple relation between The Ripken and Edward-Teng expressions:  
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where ( )12
,

1
,, +≡ −

yxyxyx αβγ . The above equations can be derived by comparison of the equations (3) 

and (12) for every coordinate. Using eqns. (15, 16), one may obtain relations between phases 

 

 III yxy Θ−Φ=Φ  and IIIIII xyx Θ−Φ=Φ ,                                          (17) 

 

where ( )[ ]1211I arccot RRxxy βα −=Θ  and ( )[ ]yyx RR αβ +≡Θ 1222II arccot . 
Using the above equations, we have tested the matching procedure using the Ripken parameters as 

the constraints derived from Edward-Teng parameters calculated by the “TWISS” command.  

The example below shows the general input structure for the matching procedure with the “TWISS” 

command. The input structure includes all items used for the previously discussed “PTC_TWISS” 

command and adds the item (numbered by “2”) which defines the equations (13)-(16). 

1) The target values of constraints are assigned by following expressions: 
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K17;0.41192030  2V12_TBT_M0 4;2.39386297  1V11_TBT_M0 ==   

2) The equations (13)-(16) are coded in the following lines: 

nonzero;:RM12 nonzero;:detR nonzero;:BETAY nonzero;:ETAX

zero”) by s(“division  messageswarning-C avoid to ! 1.0;:nonzero

====

<=====
 

detR);1.0/(1:den_detR RM21;*RM12-RM22*RM11:detR

1)/BETAY;(ALFAY^2:GAMAY 1)/BETAX;(ALFAX^2:GAMAX

+==

+=+=
 

ET;sin_PhiX1_*1_ET)sqrt(betaX:V12_ET ET;cos_PhiX1_*1_ET)sqrt(betaX:V11_ET

ET);sin(PhiX1_:ETsin_PhiX1_ ET);cos(PhiX1_:ETcos_PhiX1_ MU_X;*Pi*2:PhiX1_ET

      X1   !  BETAX;*den_detR:betaX1_ET

==

===

>>>>>==========<<<<=  

 

 ET;sin_PhiY2_*2_ET)sqrt(betaY:V34_ET ET;cos_PhiY2_*2_ET)sqrt(betaY:V33_ET

ET);sin(PhiY2_:ETsin_PhiY2_ ET);cos(PhiY2_:ETcos_PhiY2_ MU_Y;*Pi*2:PhiY2_ET

 Y2  ! BETAY;*den_detR:betaY2_ET

==

===

>>>=======>>>===<<<<<======

 

ET;sin_PhiX2_*2_ET)sqrt(betaX:V14_ET ET;cos_PhiX2_*2_ET)sqrt(betaX:V13_ET

etR);sqrt(den_d*etaX2_ET)ET)/sqrt(bsin_PhiY2_*py2_ETETcos_PhiY2_*(py1_ET

:ETcos_PhiX2_

etR);sqrt(den_d*etaX2_ET)ET)/sqrt(bcos_PhiY2_*py2_ET-ETsin_PhiY2_*(py1_ET

:ETsin_PhiX2_

BETAY);RM12/sqrt(:py2_ET (BETAY);ALFAY/sqrt*RM12)sqrt(BETAY*RM22:py1_ET

 X2  ! RM12^2);*GAMAYALFAY)*RM12*2.0BETAY*(RM22*(RM22*den_detR:betaX2_ET

==

+

=

=

=+=

=><=++=

 

ET;sin_PhiY1_*1_ET)sqrt(betaY:V32_ET ET;cos_PhiY1_*1_ET)sqrt(betaY:V31_ET

etR);sqrt(den_d*etaY1_ET)ET)/sqrt(bsin_PhiX1_*px2_ETETcos_PhiX1_*(px1_ET

:ETcos_PhiY1_

etR);sqrt(den_d*etaY1_ET)ET)/sqrt(bcos_PhiX1_*px2_ET-ETsin_PhiX1_*(px1_ET

:ETsin_PhiY1_

BETAX),RM12/sqrt(:px2_ET (BETAX);ALFAX/sqrt*RM12)sqrt(BETAX*-RM11:px1_ET

 Y1 ! RM12^2);*GAMAXALFAX)*RM12*2.0-BETAX*(RM11*(RM11*den_detR:betaY1_ET

==

+

=

=

=+=

=><=+=

 

R22); s,table(twis:RM22 R21); s,table(twis:RM21

R12); s,table(twis:RM12 R11); s,table(twis:RM11

MUY);s,table(twis:MU_Y BETY);s,table(twis:BETAY  ALFY);s,table(twis:ALFAY

MUX);s,table(twis:MU_X BETX);s,table(twis:BETAX  ALFX);s,table(twis:ALFAX

 table TWISS the from parameters T-E Get   !

==

==

===

===

====>>>>====<<<<
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2) the calculated eigen-vector components 1,1V , 2,1V  at the elements labeled with M01 , M02  are 

extracted from “TWISS”-table and assigned to the variables V11_MR_M01 , V12_MR_M02 . 

  V12_ET);M02,s,table(twis:V12_ET_M02

V11_ET);M01,s,table(twis:V11_ET_M01

K=

=  
 

 

3) The following macro named as nTWISS_eige  does not contain a setup of PTC-environment as 

the ptc_eigen -macro, and contains only the SELECTion of the Edwards-Teng parameters and 

used eigen-vector components 1,1V , 2,1V , and the call of “TWISS” command: 

};twiss;

 ET;sin_PhiY2_ , ETcos_PhiY2_ ET,sin_PhiY1_ ET,cos_PhiY1_

 ET,sin_PhiX2_ , ETcos_PhiX2_ ET,sin_PhiX1_ ET,cos_PhiX1_

betaY1_ET, betaY2_ET, betaX2_ET, betaX1_ET,

 V34_ET, V33_ET, V32_ET, V31_ET, V14_ET, V13_ET, V12_ET, V11_ET,

R22, R21, R12, R11, MUY,  ALFY,BETY, MUX,  ALFX,BETX,

  ANGLE,, L s, keyword,name,columntwiss,flag select,

clear;twiss,flagselect,

{ macro:nTWISS_eige

==

=

=

 

 

4) The matching block is essentially the same as in the case of ptc_eigen -macro. It defines 

variable parameters (the strengths K1  of two quadrupoles QF1  and QD1 ), the name of used macro 

( nTWISS_eige ), the constrains imposed for the variables V11_MR_M01 , V12_MR_M02 , and the 

matching method (jacobian ): 

n;TWISS_eigename use_macro,

 K1;QD1-NAME VARY, K1;QF1-NAME VARY, 

use_macro; match,

=

>=>=  
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endmatch;

10;-1.0ETOLERANCE 100,CALLS JACOBIAN,

2;V12_TBT_M0  V12_ET_M02 expr ,constraint

1;V11_TBT_M0  V11_ET_M01 expr ,constraint

==

==

==

K
 

 

The Testing Results 

The testing computations have been performed on PC with Pentium-IV (2 GHz) processor.  

A simple four-bend ring lattice consisting of four FODO-cells has been explored. The calculations 

of eigenvector components as well as the Ripken parameters with “TWISS” command provide 

numerical results identical to one with the “PTC_TWISS”. This confirms that the formulae (13)-(16) 

used for our calculations with the “TWISS” command are correct.  

The matching has been tested with two variables and eight constraints given by the eigenvectors at 

the different ring locations. Three methods of MAD-X matching module have been explored for 

both “TWISS” and “PTC_TWISS” commands. The results are combined in the table below. 

 LMDIF SIMPLEX JACOBIAN 
Number of calls 16 100 6 
Minimum of the penalty function 131054.6 −⋅  31083.3 −⋅  161097.5 −⋅  
Time for “TWISS”, sec 8 12 8 
Time for “PTC_TWISS”,sec 27 140 31 

 

The number of the penalty function calls and its minimal values are the same for both “TWISS” and 

“PTC_TWISS” commands. We can see that the computation times with the “TWISS” command is 

noticeably less then time with the “PTC_TWISS” command ranging from 3 to 10 times for different 

methods. Note, that the above computation times are not net times spent by matching, they also 

include the time spent by MAD-X for other commands of the input script. Therefore, the times for 

the fast methods (“LMDIFF” and “JACOBIAN”) include a considerable part spent for other 

irrelevant commands. Thus, the actual ratio between the computational times for the fast methods 
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should be higher than a factor 3. However, this result is easily predictable since our 2D linear task is 

not objective of the 3D “PTC_TWISS” and the MAD-X (version 3.03.13) nonlinear matching with 

macros. Recent improvements for the PTC matching [13] have been implemented in the MAD-X 

version 3.03.18. They can potentially improve the computation times by a factor 10 and practically 

equalized times for the matching with “TWISS” and “PTC_TWISS”. 

The described method can also take into account both calibration factors and tilts of BPMs. The 

formulation of this approach is given in Appendix.  
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Appendix 

Connection between the measured Ripken parameters (derived from the TBT data) and eigenvectors 

in MADX code is described. Constraints for MADX-matching are built. 

 

Tilted BPM monitors 

 

The beam-position monitors (BPM) are supposed to be 

tilted by some angle. The tilt angle of monitor is the angle 

χ  between the monitor abscissa and X-axis of the 

accelerator. For small 1<<χ , a beam position given by x , 

y in the “global” accelerator coordinate system is expressed by BPMx , BPMy  in the (local)  BPM’s 

coordinate system by the following formulae.  





+−=
+=

 →




+−=
+= <<

yxy
yxx

yxy
yxx

χ
χ

χχ
χχ χ

BPM

BPM1

BPM

BPM

cossin
sincos

.                               (A-1) 

 

Let’s HBPMr  and VBPMr are the calibration factor taking into consideration electronics errors for the 

horizontal (H) and vertical (V) BPMs, respectively. Then, the coordinates reported by horizontal and 

vertical BPMs are HBPMBPM
rep
HBPM rxx =  and VBPMBPM

rep
VBPM ryy = , respectively.  
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The measurements give the relative value of calibration factor ( ) HBPMHBPM
rep
HBPMHBPM xxxr −=δ . The 

relation between absolute and relative calibration factors is 11 HBPMHBPM −= rrδ . Therefore, the 

absolute calibration factor is expressed by  

 

( )HBPMHBPM 11 rr δ+= .                                                        (A-2) 

 

The beam coordinates in the Ripken notation are 
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                        (A-3) 

 

Let’s use the notations for the 4-by-4 eigenvector-matrix 
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xxxxxxxx
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Then, one may rewrite (3) 

( ) ( )
( ) ( )
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The constants are I
21

II cosφε=′a , I
21

I sinφε=′′xa , II
21

II cosφε=′ya , II
21

II sinφε=′′ya , while 

xxx aaa ≡′′+′= 2221
Iε and yyy aaa ≡′′+′= 2221

IIε , and the coordinates are expressed as 



 

13-Oct-06                                                 Page 15 of 20 
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( ) ( )
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Let’s excite beam coherent oscillations by a single kick. In the presence coupling, the excitation of 

one of the two modes will excite an oscillation in the other mode too. The horizontal kick excites 

oscillations with 0≠xa  and 0=ya , and the vertical kick excites oscillations with 0=xa  and 

0≠ya : 
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Horizontal BPMs 

Two sets of data obtained by the horizontal BPM from the horizontal and vertical kicks: 
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The coupling is assumed to be weak, that is the eigenvectors 11131 <<VV  and  11232 <<VV  are small 

values of the 1st order. With 1<<χ , one may neglect the small terms of the second order at H-kick:  
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[ ] ( ) ( )[ ]
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Using different initial phases and defining the initial values during processing of TBT data [2,7], one 

may extract components of eigenvectors, and obtain the set of 4 eigenvectors: 
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Vertical BPMs 

Two sets of data obtained by the vertical BPM from the horizontal and vertical kicks: 
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The coupling is assumed to be weak, that is the eigenvectors 13313 <<VV  and  13414 <<VV  are small 

values of the 1st order. With 1<<χ , one may neglect the small terms of the second order at V-kick:  
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Using different initial phases and defining the initial values during processing of TBT data [A, G], 

one may extract components of eigenvectors, and obtain the set of 4 eigenvectors: 
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Building of Constraints 

One may use two pairs of VARY parameters HBPMr  and HBPMχ , and VBPMr  and VBPMχ  with the 

following 8 constraints:  
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A manual writing of MAD-X input-script realizing the above method is very tedious for a large 

machine. For example, a plain input-script for TEVATRON contains 3700 lines (the file-size is 

220kb). Additional input scripts realizing the described matching have a total size up to 1 Mb. The 

code for creating MAD-X input-scripts has been written in FORTRAN and applied for TEVATRON 

lattice at injection. It allows different combinations of constraints and variable parameters. The table 

with the code switches managing types of constraints and example of input-file are given below. 

 



 

13-Oct-06                                                 Page 18 of 20 

Table. ON-status of constraints and parameters vs the code switches. 

Constraint or variable ON 
HBPM_OFF 

=.FALSE. 

H_Kick_OFF

=.FALSE. 

VBPM_OFF= 

.FALSE. 

V_Kick_OFF

=.FALSE. 
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Example of input file for TEVATRON at injection is given below:  

 
&NML_UNIT_for_output ! Default value .TRUE. (to terminal) 
    Terminal_output =.False.   
&END  
 
&NML_MADX_exe_filename 
  MADX_exe_filename =  'madxp_cwg95_20060913.exe' 
&END 
 
&NML_data_directory 
  data_dir_prefix='../MADX_TBT_data/' ! default directory for data 
&END 
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&NML_madx_TBT_debug 
  madx_TBT_debug = .TRUE.  
$END 
 
&NML_FILENAME_MADX_LINE  
! File with only elements and beam lines without action conmmands 
  Filename_madX_Line = 'tev_inj_090806_vvk.madx' 
&END 
 
&NML_FILENAME_MADX_LINE_corrections ! File with corrections to the beam-line, 
e.g. 
                                    ! new shifted LINE started from BPMf18 or  
      ! new values for physical elements 
   Filename_madX_Line_corrections = 'line_shifted_tev_inj_090806_vvk.madx' 
&END  
 
&NML_MADX_BEAM_command !beam, particle=proton, energy:= 150; ! INJECTION 
   Particle_MADX='proton' 
   Energy_MADX_GEV=150 
&END                               
 
&NML_MADX_USE_command ! USE, PERIOD=tevb0_shifted;   
   LineName_USE_MADX='tevb0_shifted' ! Name of beamline to USEd 
&END 
 
&NML_FILENAMES_TBT_data 
  Filename_HBPM_TBT_DATA = "tbt_data_hbpm_tev_inj_090806.dat" 
  Filename_VBPM_TBT_DATA = "tbt_data_vbpm_tev_inj_090806.dat" 
&END  
 
&NML_Number_of_BPMs 
  Number_HBPM_TBT = 118, Number_VBPM_TBT= 118 
&END 
 
&NML_HBPM_2_signatures 
  HBPM_signature(1)='HBPM', HBPM_signature(2)='HMONITOR'    
&END 
 
&NML_VBPM_2_signatures 
  VBPM_signature(1)='VBPM', VBPM_signature(2)='VMONITOR'    
&END 
 
&NML_Multipole_Norm_K1_2_signatures 
  Multipole_Norm_K1_signature(1)='mqsf', 
Multipole_Norm_K1_signature(2)='MULTIPOLE'  
&END 
 
&NML_Multipole_Skew_K1_2_signatures 
  Multipole_Skew_K1_signature(1)='mskw', 
Multipole_Skew_K1_signature(2)='MULTIPOLE'   
&END 
 
&NML_Constraints_type    
   HBPM_OFF=.FALSE., VBPM_OFF=.TRUE.      ! defaults  HBPM_OFF=.FALSE., 
VBPM_OFF=.FALSE. 
   H_kick_OFF=.TRUE., V_kick_OFF=.FALSE.  ! H_kick_OFF=.FALSE., 
V_kick_OFF=.TRUE.  
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!                          HBPM_OFF   VBPM_OFF   H_kick_OFF   V_kick_OFF  
! 1. H-Kick 
! 1.a  H-optics :            .FALSE.    .TRUE.      .FALSE.      .TRUE.  
! 1.b  H-coupling:           .TRUE.     .FALSE.     .FALSE.      .TRUE.      
! 1.c  H-optics & coupling   .FALSE.    .FALSE.     .FALSE.      .TRUE.      
! 
! 2. V-Kick 
! 2.a  V-optics :            .TRUE.     .FALSE.     .TRUE.      .FALSE.    
! 2.b  V-coupling:           .FALSE.    .TRUE.      .TRUE.      .FALSE.    
! 2.c  V-optics & coupling   .FALSE.    .FALSE.     .TRUE.      .FALSE.  
! 
! 3 V- & H- kiks             .FALSE.    .FALSE.     .FALSE.     .FALSE.  
&END 
 
&NML_Tune_correctors 
  TYPE_for_delta_K1_FOC='FOC', delta_K1_FOC=0.0, & ! delta_K1_FOC=0.0001 
  TYPE_for_delta_K1_DEF='DEF',  delta_K1_DEF=0.0  ! delta_K1_DEF=-0.0001 
&END 
 
&NML_VARY_LIMITS_r   
  !  VARY, r, LOWER=r_ini*(1-r_rel)-r_abs, UPPER=r_ini*(1+r_rel)+r_abs 
    Use_limits_r=.TRUE.,   r_ini=1,   r_abs=0.01, r_rel=0.01 ! Calibration 
factor 
&END 
&NML_VARY_STEP_r 
  USE_VARY_STEP_r=.TRUE., VARY_STEP_r=1.0E-04  
&END 
 
&NML_VARY_LIMITS_chi 
  Use_limits_chi=.TRUE., chi_ini=0, chi_abs=0.01, chi_rel=0.01 ! Tilt angle 
(rad) 
&END 
&NML_VARY_STEP_chi 
  USE_VARY_STEP_chi=.TRUE., VARY_STEP_chi=1.0E-04  
&END 
 
&NML_VARY_LIMITS_K1 
  Use_limits_k1=.FALSE.,  k1_ini=0, k1_abs=0.01, k1_rel=0.01 ! Multipole 
strength K1 (quadrupole) 
&END 
&NML_VARY_STEP_K1 
  USE_K1_VARY_STEP=.TRUE., K1_VARY_STEP=1.0E-05  
&END 
 
&NML_VARY_OFF 
   VARY_K1_OFF=.FALSE.,  VARY_r_OFF=.TRUE., VARY_chi_OFF=.TRUE.  
! defaults    VARY_K1_OFF=.FALSE.,  VARY_r_OFF=.TRUE., VARY_chi_OFF=.TRUE.  
&END 
 
&NML_TYPE_Multipole_K1_OFF !  
   ! Max Number of TYPES=1000, the string Length <= 20 
    TYPE_Multipole_K1_OFF(1)='FOC' 
    TYPE_Multipole_K1_OFF(2)='DEF' 
    !TYPE_Multipole_K1_OFF(3)='SKW' 
&END 
 


